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LOW-SPEED WIND-TUNNEL INVESTIGATION OF A 

WINGLESS JET VTOL TRANSPORT MODEL 

By M. 0. McKinney, Jr. 

SUMMARY 

A wind-tunnel investigation has been made of the static stability 
and lift and drag characteristics of a small-scale model which repre- 
sented a wingless turbo jet-powered vertical-take -off -and-landing (VTOL) 
transport airplane, which might have some performance advantage over a 
winged airplane for cruise at high subsonic speeds at very low altitudes. 
The niodel consisted of a fuselage with conventional tail surfaces at, the 
rear and with 12 simulated jet engines near the c e n t e r  vhlzh coal6 be 
Lilted from a horizontal attitude for normal forward flight to a verti- 
cai attitude for hovering flight. The investigation consisted of power- 
off and power-on longitudinal stability and lift and drag tests and 
power-off lateral stability tests. The results of the investigation 
showed that satisfactory static longitudinal stability characteristics 
could be obtained and that a maximum trimmed lift-drag ratio of about 5 
could be obtained at a lift coefficient of about 0.15 which is approxi- 
mately the lift coefficient for a Mach number of 0.6 at sea level for a 
full-scale airplane of the type represented by the model. 

INTRODUCTION 

Preliminary design studies have shown that for an airplane designed 
for high-speed low-altitude flight (for example, a Mach number of 0.8 at 
sea level), the use of wings detracts from the performance of the air- 
plane in this design condition. This fact is illustrated in figure 1 
which shows the type of liftdrag po la r s  that would be obtained with 
winged and wingless airplane configurations having the same body and 
tails. The winged airplane has a much higher maximum lift-drag ratio 
than the wingless configuration; however, at a low lift coefficient 
corresponding to that required for high subsonic speeds at sea level, 
the wingless configuration has the higher lift-drag ratio. A further 
advantage of a wingless conflguration for high-speed low-altitude 
operation is that it would ride more smoothly because of its low lift- 
curve slope. By the use of vertical-take-off-and-landing principles, 
it is possible to eliminate the need for a wing for take-off and 
landing; thus, a wingless airplane becomes technically feasible from a 
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MODEL COMPONENT DESIGNATIONS 

I -  \ \ body with symmetrical afterbody (see f i g .  j ( d ) )  "1 

B2 body with upswept afterbody (see f i g .  3 (b) )  

N nacel les  

Hl,H;1,.  . .H3 horizontal  t a i l s  (see f i g .  4 )  

v1,v2,. . .VB v e r t i c a l  ta i ls  (see f ig .  5) 

L 
5 
7 
5 

APPARATUS AND TESTS 

Three-view sketches of the model a r e  shown i n  f igure  3 ,  sketches 
of the various t a i l s  used i n  the tests are shown i n  f igures  4 and 5, 
and photographs of the model a r e  presented i n  f i g u r e  6. 
intended t o  represent a turbojet-powered VTOL t ranspor t  a i rplane with 
12 engines - 4 engines i n  the nacel les  and 8 engines mounted i n  turn-  
tab les  recessed i n t o  the s ides  of the  fuselage with r e t r a c t a b l e  in le t  
doors and with the j e t s  exhausting out the s ides  of the turn tab les  a t  
an angle of 15' with respec t  t o  the  a i rp lane  center  l i n e .  
t ab les  together with the nacel les  could be r o t a t e d  t o  a v e r t i c a l  a t t i -  
tude f o r  v e r t i c a l  take-off and landing. These turn tab les  show up much 
more c lear ly  i n  the photographs of f igure  6 than i n  the d r a w i n g  of f i g -  
ure 3(a). The r e t r a c t a b l e  inlet  doors were not  simulated on the model. 

recessed engines w a s  simulated by compressed a i r  which w a s  supplied t o  
the model through thin-wall  f l e x i b l e  hoses as i l l u s t r a t e d  i n  the sketch 
of' f igure 7. During the power-off tests the i n l e t  pipes,  which can be 
seen protruding from the s ides  of the  nacelles i n  the  photographs of 
f igure  6, were removed and the plugs i n  the  i n l e t s  of the nacel les  were 
removed t o  permit a i r  flow through the  nace l les .  Two of the  hor izonta l  
ta i ls ,  H 4  and H5, were equipped with 25-percent-chord elevators  f o r  
longitudinal control  t e s t s .  

The model w a s  

The turn-  

if 

For power-on tests,  the flow from both the pod-mounted engines and the  
l, 

The t e s t s  were made i n  the Langley f r e e - f l i g h t  tunnel which has a 
12-foot octagonal cross sect ion.  Most of the  tests were made a t  an a i r -  
speed of about 45 m i l e s  per  hour which gave an e f f e c t i v e  Reynolds number 

made with t r a n s i t i o n  s t r i p s  of No. 60 carborundum g r i t  2 inches behind 
of about 4.5 X 10 6 based on the fuselage length.  All the  tests were V 

the nose of t h e  fuselage and a t  the 5-percent-chord s t a t i o n  of the t a i l s .  I 
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The model w a s  s t i n g  mounted with a strain-gage balance located with i t s  
moment center  a t  the center of gravity.  No corrections were applied t o  
the d a t a  except a buoyancy correct ion t o  the drag which resu l ted  from 
the  s ta t ic -pressure  gradient along the tunnel, and a correct ion f o r  the 
drag of the  compressed-air hoses i n  the power-on tests. 

The invest igat ion consisted of power-off longi tudinal  s t a b i l i t y  
and control  and lateral  s t a b i l i t y  t e s t s  of the model with bodies Bl and 
B2 and with various horizontal  and v e r t i c a l  tai ls;  and power-on longi- 
tud ina l  s t a b i l i t y  and control  tests of the model with body B1, with 
horizontal  ta i ls  H3 and H?, and with various angles of incidence of the 
je ts  from Oo t o  800. No lateral  s t a b i l i t y  t e s t s  were made with the 
power on because of the r e s t r a i n t  of the hoses supplying compressed a i r  
t o  the  model. 

RESULTS AND DISCUSSION 

Longitudinal S t a b i l i t y  and Control 

Power-off t e s t s . -  The e f f e c t s  of various model components including 
the various-size horizontal  t a i l s  a r e  shown i n  f igure  8 f o r  configura- 
t ions  with body B1. 
model w a s  longi tudinal ly  unstable with t a i l s  H1 and Hg and w a s  stable 
with t a i l s  H3 and H4.  
complete configurations with the horizontal  ta i ls  which provided 
s t a b i l i t y  and f o r  the t a i l - o f f  configuration a r e  presented i n  f igure  9. 
These da ta  show t h a t  m a x i m u m  values of 
t i o n s  BlNViH3 and BlNV5H4 a r e  about 5 a t  a l i f t  coef f ic ien t  of about 
0.15. The r e s u l t s  of the elevator-effectiveness tests f o r  the model 
with the horizontal  t a i l  H4 are presented i n  f igure  10. 
t h a t  the model can be trimmed over t h e  e n t i r e  angle-of-attack range 
covered i n  the  tests (00 t o  30') and t h a t  it t r i m s  with 0' elevator  
def lec t ion  a t  lift coef f ic ien ts  of about 0.20 which are s l i g h t l y  higher 
than t h a t  required f o r  high-speed low-altitude cruise .  

The pr inc ipa l  r e s u l t  of these t e s t s  i s  t h a t  the 

The l i f t - d r a g  r a t i o s  from these tests f o r  the 

L/D f o r  the s tab le  configura- 

These d a t a  show 

The r e s u l t s  of the longi tudinal  t e s t s  with the body B2 are  presented 
i n  f i g u r e  11. 
but w a s  s table with t a i l  H2. The var ia t ion of L/D with CL f o r  t h e  
s t a b l e  configuration (B$"H) i s  presented i n  f igure  12 .  
the e f f e c t  of the two d i f f e r e n t  bodies, the l i f t - d r a g  r a t i o s  a r e  a l s o  
presented i n  f igure 12  f o r  corresponding configurations with body B1 .  

These data  show t h a t  the model w a s  unstable with t a i l  Hl 

I n  order t o  show 
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These data  show t h a t  the configurations with body B1 have somewhat 

or v l t h  a horlz=ntnl  t a i l  which gave abnut  the same degree of longi-  
tud ina l  s t a b i l i t y  H4.  
ence i n  minimum drag coe f f i c i en t  which w a s  about 0.020 f o r  configura- 
t i ons  w i t h  B1 and about 0.025 f o r  configurat ions with B2. 

higher m a x i m u m  values of L/D, e i t h e r  w i t h  t he  same hor izonta l  t a i l  H2 I 

This d i f fe rence  r e s u l t s  mainly from the  d l f f e r -  

Power-on tests.-  The r e s u l t s  of the  power-on longi tudina l  s t a b i l i t y  
and control  tests a re  presented i n  f igu res  1.3 t o  19. A s  pointed out  
previously,  t h e  r e t r ac t ab le  i n l e t s  proposed f o r  t he  recessed engines 
were not represented on the  model. The da ta  show t h a t  power caused a 
reduction i n  longi tudinal  s t a b i l i t y  so t h a t  the  model w a s  neu t r a l ly  
s t ab le  o r  unstable f o r  j e t  incidence angles of 20° o r  more with horizon- 
t a l  t a i l  H7, with which it had been s t ab le  i n  the  power-off tes ts  o r  i n  
the  power-on t e s t s  a t  a j e t  incidence of 0'. 
with the l a rge r  t a i l  H5, the  model w a s  longi tudina l ly  stable over t h e  
e n t i r e  range of power and jet-incidence conditions covered i n  the tests 
except f o r  some of t he  cases with 200 down-elevator def lec t ion .  These 
la t te r  cases are not very s ign i f i can t ,  however, s ince i n  a l l  of these 
cases the model had la rge  nose-down p i tch ing  moments and w a s  s t ab le  with 
an elevator  s e t t i n g  more near ly  t h a t  required f o r  t r i m .  The l i f t - d r a g  
r a t i o s  of the model with t a i l  H5, taken from the  
ure 13, a r e  presented i n  f igu re  20. This curve shows a maximum value of 
L/D of near ly  6 with an e leva tor  de f l ec t ion  of Oo and a maximum trimmed 
value of L/D of 7 a t  a l i f t  coe f f i c i en t  of about 0.15. This value 
would be the l i f t  coef f ic ien t  a t  a Mach number of about 0.6 a t  sea l e v e l  
for the 30,OOO-pound hypothetical  a i rp lane  t h a t  the model w a s  designed 
t o  represent a t  a scale  of 1/9. 

The da ta  a l so  show t h a t ,  

T& = 0 run of f i g -  

L 

4 
The da ta  of f igures  13 t o  17 a l s o  show t h a t ,  f o r  the  angles of j e t  

incidence f o r  which con t r e l  e f fec t iveness  tests were run ( i j  = Oo 
i j  = 40°), the  model could be trimmed with e leva tor  def lec t ions  less 
than 20° f o r  a l l  power conditions.  

t o  

L 
51 
71 
5 

Lateral S t a b i l i t y  

The r e s u l t s  of the l a t e r a l  s t a b i l i t y  tests, which were made only f o r  
the  power-off condition, a r e  presented i n  f igu res  21 t o  32 f o r  the case 
of body B1. 
f igures  of t h i s  group were taken from the  slopes a t  s m a l l  angles of s ide -  
s l i p  from the  r e s u l t s  of the inmediately preceding s i d e s l i p  tests.  

The l a t e r a l  s t a b i l i t y  der iva t ives  presented i n  a l t e r n a t e  

Y 

The da ta  of f igure  23(a) show t h a t  with the o r i g i n a l  v e r t i c a l  t a i l  V1 4 

the  model w a s  d i r ec t iona l ly  unstable a t  an angle of a t t ack  of Oo f o r  
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s m a l l  angles of s i d e s l i p .  

same loca t ion  as VI (see f i g .  e?) ,  the model w a s  d i r ec t iona l ly  s t a b l e  
a t  an angle of a t t ack  of Oo; however, it w a s  much less s t ab le  a t  s m a l l  
angles of s i d e s l i p  than a t  l a rge  angles. Analysis of t he  da ta  ind ica ted  
t h a t  t he  e f fec t iveness  of these t a i l s  w a s  only about 60 percent as g r e a t  
as would be expected, perhaps because of unfavorable sidewash effects o r  
vortex flow from the  body such as  tha t  discussed i n  reference 1. Since 
the e f fec t iveness  of these t a i l s  w a s  low f o r  t h i s  rearward pos i t ion ,  it 
seemed l o g i c a l  t o  t r y  some more forward t a i l  loca t ions .  
which were about the  same s i z e  as tails  V1 and V2, r espec t ive ly ,  were 
therefore  t e s t ed .  Comparison of t h e  d a t a  f o r  t a i l s  V3 and V 4  from f i g -  
ures 27 t o  30 with the data for  ta i ls  Vl and V2 from f igu res  23 t o  26 
shows t h a t  the t a i l s  i n  the forward posi t ion gave more d i r ec t iona l  sta- 
b i l i t y  at  an angle of a t t ack  of Oo than the  corresponding ta i ls  i n  the  
rearward pos i t ion .  Their g rea t e r  contr ibut ion t o  d i r ec t iona l  s t a b i l i t y  
r e su l t ed  from the  f a c t  t h a t  they produced more s ide  force  than the 
corresponding rearward t a i l s ,  evidently because of the  end-plate effect  
of the  hor izonta l  t a i l  o r  because of a more favorable sidewash. 

With the larger  t a i l  V 2  i n  approximately the  

T a i l s  V 3  and V4,  

T a i l  V w a s  intended t o  represent a reasonably optimm v e r t i c a l  5 
t a i l  with regard t o  both s i z e  and posi t ion.  The da ta  f o r  this t a i l  are 
presented i n  f igu res  31 and 32. These da ta  show t h a t  the model'was 
d i r e c t i o n a l l y  s t ab le  throughout the  angle-of-attack range except t h a t  
it w a s  not  s t a b l e  a t  angles of s ides l ip  above loo a t  an angle of a t t ack  
of 30°. 
would be acceptable f o r  a conventional a i rp lane .  
therefore ,  the model seemed t o  have reasonably good la teral  s t a b i l i t y  
c h a r a c t e r i s t i c s  from s t a t i c  considerations.  

It a l so  had a pos i t ive  dihedral e f f e c t  of a magnitude which 
I n  t h i s  configuration, 

The results of t he  l a t e r a l  s t a b i l i t y  t e s t s  f o r  configurations with 
body B2 a r e  presented i n  f igures  33 t o  40. 
the o r i g i n a l  t a i l  ( ta i l  V6)  the  model w a s  d i r ec t iona l ly  unstable a t  
angles of a t t ack  of loo or more. W i t h  the same t a i l  moved t o  a more 
forward pos i t i on  ( ta i l  V7) the  s t a b i l i t y  a t  high angles of a t t ack  w a s  
improved but  the model w a s  not s t a b l e  a t  angles of a t t ack  of 20° and 30°. 
With the somewhat l a rge r  ta i l  (tail V8) i n  the  forward pos i t i on  t h e  
model w a s  general ly  d i r ec t iona l ly  stable except a t  the higher angles of 
a t t ack  and s i d e s l i p .  With v e r t i c a l  t a i l s  of about the same s i ze ,  t he  
d i r e c t i o n a l  s t a b i l i t y  of the model was genera l ly  somewhat lower with 
body B2 than with body B1. This condition w a s  p a r t i c u l a r l y  t r u e  f o r  t h e  
case of BlNH2V4 i n  f igu re  30 and B P 2 V 7  i n  f igu re  38 and was less d e f i -  
n i t e  i n  the  case of B1NH2Vl i n  f igu re  24 and B2NHzV6 i n  f igu re  36. 

These da ta  show t h a t  with 
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CONCLUSIONS 

h experimental investigation w a s  corliructed to detei-ii~lrie the lift 
and d r a g  and static stability characteristics of a small-scale model 
which represented a wingless turbojet-powered vertical-take-off-and- 
landing (VTOL) airplane since analysis had indicated that such a con- 
figuration might have some performance advantages for cruise at high 
subsonic speeds at very low altitudes. The results of the investiga- 
tion showed that satisfactory static longitudinal and lateral stability 
could be obtained with the wingless jet VTOL transport configuration 
represented by the model and that the model has a maximum trimmed lift- 
drag ratio of about 5 at a lift coefficient of 0.15, which is approxi- 
mately the lift coefficient for high subsonic speeds at sea level for 
a full-scale airplane of this type. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va., May 19, 1959. 

1. Stone, Ralph W., Jr., and Polhamus, Edward C.: Some Effects of Shed 

Rep. 108, AGARD, North Atlantic Treaty Organization (Paris), Apr. - 
Vortices on the Flow Fields Around Stabilizing Tail Surfaces. h 

May 1957 4 
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Figure 1.- Comparison of l i f t - d r a g  p o l a r s  f o r  winged and wingless con- 
f igu ra t ions .  CL and CA are l i f t  and drag c o e f f i c i e n t s  based on 
plan-form area of body which w a s  the same i n  both cases.  
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Figure 2.- Sketch of axes showing pos i t ive  d i r e c t i o n  of forces ,  
moments, and angles.  
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(a) Model with body B1. 

Figure 3 . -  Sketches of models. A l l  dimensions are i n  inches. 
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(b) Model w i t h  body B2. 

Figure 3 . -  Concluded. 
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1 

P 

. 
Y 



k 
0 



16 

c- 
In u) 
I cn 
In 

I 

n 
P 
W 



3H' 

1: 

v' 

P 

L' 

. 
' 0' 

COMPRESSED A I R  
s UPPLY 

Figure 7.- Setup used in power-on t e s t s .  



18 

C m  

.04 

0 

704 I 

.2 CD 

0 

(a) Effect of components including Hl 

T 
VI 
4 
VI 

4 0 :04 

Figure 8.- Power-off longitudinal characteristics of model with body B1. 
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Figure 10.- Elevator e f fec t iveness  of model i n  configuration B1NV5H4. 
Power of f ;  i j  = oO. 
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Figure 21.- Effect of components on lateral characteristics of model 
with body B1 and vertical tail off. Power off; i J - = 0'. 
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Figure 34.- Ef fec t  of components on s t a t i c  lateral  s t a b i l i t y  der iva t ives  
of model with body B2 and v e r t i c a l  t a i l  o f f .  Power o f f ;  i j  = 0'. 
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